メインコンテンツに移動
カーボンニュートラル実現に向けた歯車システムとトライボロジー

 

Aggregator

NTN、DLC被覆の風力発電装置主軸用自動調心ころ軸受を開発

4年 7ヶ月 ago
NTN、DLC被覆の風力発電装置主軸用自動調心ころ軸受を開発kat 2020年10日20日(火) in in

 NTNは、ころの転動面に密着性に優れたDLC(ダイヤモンドライクカーボン)膜を適用することで、耐摩耗性を大幅に向上させた風力発電装置主軸用「DLCコーティング自動調心ころ軸受」を開発した。風力発電装置など、油膜形成が困難な厳しい潤滑条件下で使用される産業機械向け軸受として提案を進め、2021年に25億円の販売を目指す。

DLCコーティング自動調心ころ軸受

 

 風力発電装置の主軸用軸受(主軸受)には、高負荷容量かつ取付誤差に対する許容能力に優れた自動調心ころ軸受が多く採用されている。主軸受は、風況条件により起動と停止を繰り返し、極めて低速な回転状態で使用される。

 こうした環境で使用される主軸受には、潤滑不足による軌道面ところの金属接触と自動調心ころ軸受特有の転がりすべりが原因で、軌道面に摩耗が発生し、はく離や割れといった不具合に進展するという課題があった。

風力発電装置ナセルにおける適用箇所

 

 本開発品は、ころの転動面に高い密着力により剥がれにくい非晶質構造の硬質膜、DLC 膜を適用することで軸受軌道面の耐摩耗性を大幅に向上させている。被覆するDLC 膜は①母材との密着力を高めるための金属下地層、②下地層と最表層の急な硬度変化を避けるために設けた中間層、③非常に硬質な最表層の3層構造となっており、過酷な潤滑状態でも、密着力の高いDLC膜が継続的に高い性能を発揮する。

 油膜が薄くなり油膜がない部分において局部的に二面が接触している「境界潤滑」、実機最大接触応力(実際の風力発電装置で使用される際に最大荷重が発生する時の接触応力)、転がりすべり条件で、DLC 膜のはく離は認められなかった。また、DLC 膜がない標準品の軌道面が1ヵ月で摩耗からはく離に至る加速試験条件下において、本開発品はほとんど摩耗が発生しなかった。

 本開発品は、すでに一部の風力発電装置メーカー向けに量産を開始しており、今後さらに提案を進めるとともに、特に軌道面の摩耗による早期損傷に対応する補修品としての販売も強化していく。また、今回開発した被膜処理技術は、風力発電装置のコンパクト化を目的に2017 年に開発した「左右列非対称設計」と組み合わせて、さらなる耐摩耗性向上とコンパクト化を両立できる。

 NTN は、装置メーカーがニーズに合わせて本開発品のDLC コーティングや左右列非対称設計から最適なオプションを選択できるよう商品ラインナップを拡充し、風力発電市場における販売拡大に取り組んでいく。
 

風力発電装置主軸用自動調心ころ軸受のラインナップ
kat

NTN、動力伝達装置向け低昇温・低トルク円すいころ軸受を開発

4年 7ヶ月 ago
NTN、動力伝達装置向け低昇温・低トルク円すいころ軸受を開発kat 2020年10日20日(火) in in

 NTNは、自動車のトランスミッションやデファレンシャル用の「低昇温・低トルク円すいころ軸受」を開発した。新開発の樹脂保持器の採用や軸受内部設計の最適化により、世界最高水準の低昇温性(耐焼付き性)と低トルク性を実現、次世代モビリティの市場ニーズに対応する。電気自動車(EV)、ハイブリッド車(HEV)を含む自動車用トランスミッション、自動車用デファレンシャルなど、動力伝達装置用軸受として拡販、2026 年度に20 億円/年の販売を目指す。

低昇温・低トルク円すいころ軸受

 

 近年、自動車産業がスマートモビリティやCASE に代表されるように大きな変革期を迎える中、電動化やカーシェアリングによる航続距離の延長などを背景に、動力伝達装置の高効率化が加速している。これにより、装置内の潤滑油量の低減や低粘度油への切り替えが進められ、軸受にはこうした過酷な潤滑条件下の対応や、より一層の低トルク化が求められている。

 こうした新たに浮上した次世代モビリティの市場ニーズに対応する商品として開発された「低昇温・低トルク円すいころ軸受」は、新型樹脂保持器に付与した凹み形状によって潤滑油の不足時にころ端面への給油が可能となり昇温を抑制(図1①)するとともに、ころ端面と内輪大つば面間のすべり接触部の潤滑性が向上する設計を適用し、温度上昇を抑制(図1②)。動力伝達装置における低粘度オイルの使用や、電動化による急加速時のオイル量が少ない潤滑条件を想定し評価(条件は、常温から無給油運転で軸受外輪が100℃到達までの時間で評価)した結果、同社標準品比10 倍向上の低昇温性が確認されている(世界最高水準)。

 また、新型樹脂保持器が軸受内部への過度な潤滑油流入を抑制し潤滑油の撹拌抵抗による回転トルクを低減(図1③)するとともに、世界最高水準の軸受定格寿命(長寿命)と許容回転速度の実現をコンセプトとして2017年に開発した「自動車用ULTAGE 円すいころ軸受」のころ設計や、軸受内部設計の最適化による長寿命効果で軸受を小型化し、ころと軌道輪(内外輪)の転がり接触長さを減少させることで回転トルクを低減(図1④、図2①)。さらに軸受の小型化により、ころのピッチ円径を小さくし、ころと内外輪間の周速を低減、転がり抵抗を抑えることで回転トルクを低減した(図1⑤、図2②)。これらにより、同社標準品比で回転トルクを66%低減(世界最高水準)。優れた低トルク性によって、動力伝達装置のさらなる高効率化ニーズに対応する。

 

図1 開発品断面構造図と特徴

 

図2 標準品と開発品の比較(内部設計の最適化)

 

 開発品は、低昇温性、低トルク性という特長をコンパクトな軸受サイズで実現できるため、動力伝達装置の高効率化や車両の省燃費 ・省電費化だけではなく、装置の小型 ・軽量化、ひいては車内スペースの拡大や運転時の快適性の向上にも貢献する。NTNでは、開発品およびその要素技術を次世代モビリティに適用可能な仕様としてグローバルに提案していく。

kat

NTN、高速回転・高負荷容量の動力伝達装置用円すいころ軸受を量産納入開始

4年 7ヶ月 ago
NTN、高速回転・高負荷容量の動力伝達装置用円すいころ軸受を量産納入開始kat 2020年10日20日(火) in in

 NTNは、自動車のトランスミッションやデファレンシャル向けに開発した「自動車用ULTAGE(アルテージ)円すいころ軸受」の量産納入を開始した。

自動車用ULTAGE円すいころ軸受

 

 トランスミッションやデファレンシャルなどの動力伝達装置は、自動車の省燃費化を背景に小型・軽量化が進んでおり、これに伴い軸受の使用環境は過酷さを増している。

 小型・軽量の装置で従来と同等のトルクを出力するために、装置の高出力化が進み、軸受には高速回転性能が求められている。また、軽量化のために用いられるアルミ製ハウジングは、従来の鉄製のハウジングよりも剛性が低くなり、軸受に加わる偏荷重が増加する。こうした過酷な使用環境下でも軸受寿命を確保するため、動力伝達装置向け軸受では高負荷容量の実現が求められている。

 NTNは、長年にわたる内部設計と加工方法の双方の改良により、優れた低昇温性(耐焼き付き性)を誇る自動車用円すいころ軸受を市場に展開している。今回量産納入を開始した自動車用ULTAGE円すいころ軸受は、独自のころ形状により、低昇温性に加え、従来品を上回る世界最高水準の高速回転性能と高負荷容量を実現している。

 独自のころ形状は、軌道面の接触面圧を最小化させるとともに、つば面の温度上昇を抑制することが可能。これにより、転動疲労寿命を向上させ、高負荷容量を表す基本動定格荷重は従来品比で1.2倍、軸受寿命は1.8倍以上、許容回転速度は約10%向上させている。

 トランスミッションの小型化(軸長短縮化)を実現する長寿命性とともに、優れた低昇温性が評価され、今回の量産納入につながったもの。

軸受構造

 

適用例

 

従来品との比較

 

kat

NTN、DLC被覆の風力発電装置主軸用自動調心ころ軸受を開発

4年 7ヶ月 ago
NTN、DLC被覆の風力発電装置主軸用自動調心ころ軸受を開発

 NTNは、ころの転動面に密着性に優れたDLC(ダイヤモンドライクカーボン)膜を適用することで、耐摩耗性を大幅に向上させた風力発電装置主軸用「DLCコーティング自動調心ころ軸受」を開発した。風力発電装置など、油膜形成が困難な厳しい潤滑条件下で使用される産業機械向け軸受として提案を進め、2021年に25億円の販売を目指す。

DLCコーティング自動調心ころ軸受

 

 風力発電装置の主軸用軸受(主軸受)には、高負荷容量かつ取付誤差に対する許容能力に優れた自動調心ころ軸受が多く採用されている。主軸受は、風況条件により起動と停止を繰り返し、極めて低速な回転状態で使用される。

 こうした環境で使用される主軸受には、潤滑不足による軌道面ところの金属接触と自動調心ころ軸受特有の転がりすべりが原因で、軌道面に摩耗が発生し、はく離や割れといった不具合に進展するという課題があった。

風力発電装置ナセルにおける適用箇所

 

 本開発品は、ころの転動面に高い密着力により剥がれにくい非晶質構造の硬質膜、DLC 膜を適用することで軸受軌道面の耐摩耗性を大幅に向上させている。被覆するDLC 膜は①母材との密着力を高めるための金属下地層、②下地層と最表層の急な硬度変化を避けるために設けた中間層、③非常に硬質な最表層の3層構造となっており、過酷な潤滑状態でも、密着力の高いDLC膜が継続的に高い性能を発揮する。

 油膜が薄くなり油膜がない部分において局部的に二面が接触している「境界潤滑」、実機最大接触応力(実際の風力発電装置で使用される際に最大荷重が発生する時の接触応力)、転がりすべり条件で、DLC 膜のはく離は認められなかった。また、DLC 膜がない標準品の軌道面が1ヵ月で摩耗からはく離に至る加速試験条件下において、本開発品はほとんど摩耗が発生しなかった。

 本開発品は、すでに一部の風力発電装置メーカー向けに量産を開始しており、今後さらに提案を進めるとともに、特に軌道面の摩耗による早期損傷に対応する補修品としての販売も強化していく。また、今回開発した被膜処理技術は、風力発電装置のコンパクト化を目的に2017 年に開発した「左右列非対称設計」と組み合わせて、さらなる耐摩耗性向上とコンパクト化を両立できる。

 NTN は、装置メーカーがニーズに合わせて本開発品のDLC コーティングや左右列非対称設計から最適なオプションを選択できるよう商品ラインナップを拡充し、風力発電市場における販売拡大に取り組んでいく。
 

風力発電装置主軸用自動調心ころ軸受のラインナップ

 

kat 2020年10月20日 (火曜日)
kat

日本ペイント、可視光応答形光触媒を採用した水性塗料表面の新型コロナウイルス不活性効果を確認

4年 7ヶ月 ago
日本ペイント、可視光応答形光触媒を採用した水性塗料表面の新型コロナウイルス不活性効果を確認

 日本ペイントは、可視光応答形光触媒を採用した水性塗料(試験用)の塗膜表面に接触させた新型コロナウイルスの不活性効果を確認した。

 世界保健機関(WHO)の感染症調査機関の認定を受けた、ガーナ大学 医学部附属 野口記念医学研究所(NMIMR)との共同研究の一環としての実証実験で、塗膜表面に接触させた新型コロナウイルスの不活性効果を確認した。なお、本実験は実験室で行われたものであり、結果は実商品や実使用環境での効果を示すものではないという。

 実験では、ガラス表面に接触させた新型コロナウイルスと、塗膜表面に接触させた新型コロナウイルスを比較すると、ガラス表面に対して、塗膜表面に接触させた新型コロナウイルスが99%以上減少する効果を確認した。

ウイルス残存率の実験結果

 

admin 2020年10月20日 (火曜日)
admin