Aggregator
日神GHDが新中計、26年度営業益41%増 投資用不動産を強化
7月契約の鉄スクラップ輸出入札、5万2168円 関東鉄源
アイユーコンサル、山口・周南に拠点開設
東商など、感染症対策を強化 23日からセミ動画配信
韓国技術VB財団東京事務所、中小製造業の販路開拓支援
ミロク情報、生成AIなどDXセミ 地域密着で生産性向上
産業TREND/羅針盤 野村総合研究所(93)【地方大学と地域イノベーション】企業・自治体との連携カギ
材料相場表/PDFで公開
DLC工業会、2024年定時会員総会と功労賞授賞式を開催
DLC工業会( http://dlck.org/ )は6月14日、東京都港区の航空会館で「2024年定時社員総会」を開催した。当日は、中森秀樹会長(ナノテック 代表取締役社長)を議長に選出して議事が進行された。
議事においては2023年度事業報告、決算報告が行われた後、2024年度事業計画(案)、同予算(案)について審議、満場一致で可決された。事業計画では、「DLC工業会確認マーク発行制度」による規格適合性確認マークの発行を行うこと、経済産業省(三菱総合研究所経由)のDLC国際標準化に関わる委託事業を受託し必要な活動を行うことなどを確認した。また、今年11月に京都でISO/TC107の国際会議を開催、わが国開催でロビー活動を強化し、今後のISO規格を日本主導で行えるよう働きかけていく。
任期満了に伴う理事・監事選任では中森会長が再選。中森会長は「今回のISO/TC107の日本開催をきかっけに工業会の活動を活発にしたい。予算も限られるため自主事業に力を入れていく。また、現在のDLCの三つのISO規格はトライボロジー的要素からつくられているが、今後は医療における生体適合性や半導体分野、エネルギー産業に活用する保護膜としてのDLCの規格について検討していきたい」と述べた。
中森会長また、当日の席上では「DLC工業会功労賞」の授賞式が行われレスカが受賞。DLC試験方法のISO規格発行にあたり多大なる貢献をしていることや、同工業会の講演会などに貢献していることが認められた。レスカを代表して挨拶を行った宝泉俊寛氏は「今回はこのような栄誉ある賞をいただき、ありがとうございました。弊社は試験機メーカーでコーティングの摩擦・摩耗や密着性の評価を行っているが、DLCについても試験・評価を行っており工業会に携わらせていただいている。今後もDLCの評価について良いものは良い、悪いものは悪いといった判断ができる試験方法を提供していきたい」と述べた。
宝泉氏と中森会長同工業会の現時点での正会員は、ナノテック、リックス、アルテクス、トッケン、平和電機、ナノテックシュピンドラー、フロロコート、ウエキコーポレーション、レスカ、ウォルツの10社。特別会員は大竹尚登氏(東京工業大学)、大花継頼氏(産業技術総合研究所)、平栗健二氏(東京電機大学)、平田 敦氏(東京工業大学)の4名となっている。
admin 2024年7月12日 (金曜日)機械要素の表面課題を複合処理で解決する表面設計コンソーシアム
表面設計コンソーシアムは2022年7月、複雑な表面課題にソリューションを提供しつつ、今後求められる表面課題に対応する複合処理の技術開発をする目的で設立された。創設メンバーは、微粒子投射技術を有する不二WPCと、多様なコーティング技術を持つ日本電子工業、熱処理技術を提供する武藤工業、金型の設計・製造を手掛ける昭和精工に加えて、豊富な分析評価技術を保有する神奈川県立産業技術総合研究所(KISTEC)、理論構築を担う横浜国立大学、事務局・広報を務めるメカニカル・テック社。
本格稼働を開始した表面設計コンソーシアムは本年6月19日~21日、東京都江東区の東京ビッグサイトで開幕される「第29回 機械要素技術展[東京]」の不二WPC/表面設計コンソーシアムの共同ブース(ブースNo.E58-18)において、共同受注によるビジネス創出に向けて、共創により可能になる複合処理についてアピールする。
本稿では、表面を設計することの難しさと、各種の表面課題にソリューションを提供する、同コンソーシアムの共創による表面改質の複合技術について、事例をまじえて紹介する。
2.「表面を設計する」ことの重要性と、コンソーシアムの役割表面に優れた機能を与えるには、ベース素材の材料設計技術や表面改質技術、その上に被覆する薄膜制御技術、さらには最表面のテクスチャ制御技術までをトータルに高度なレベルで協調させる「設計」が必要である(図1)。
図1 表面設計のイメージ金型や機械部品の不具合は、損傷がかなり進んだ段階で発覚することが多いために、一部が欠損していたり、摩滅や腐食が進行したりしていて「はじめに何が起きたのか」を明らかにするのが容易でない場合がよくある。摩耗・摩擦・チッピング(微小な欠け)・はく離・凝着・焼付き・かじり・変寸・曲げ疲労・転動疲労・面疲労など、はじめに起きる損傷過程を突き止めることで、効果的なソリューションの提供につなげることができるが、証拠が不十分であったり、時間やコストを十分にかけられなかったりすることも多く、容易ではない。
現象が複雑・動的でメカニズム解明が容易でないといったこうした表面技術分野において、生産技術に関わる企業からのニーズ・オーダーに対して1機関で表面設計ソリューションを開発・提供することは難しい。これに対し表面設計のスペシャリスト集団である表面設計コンソーシアムは、情報が分散しがちで目標が不明瞭になりがちといった、ものづくり企業を取り巻く環境の変化や課題に対して、ワンストップで情報を集約・統合し目標の明確化と技術の統合を図り技術の高付加価値化につなげることのできる、産官公地域連携の新しい形である、と言える。
3.表面改質の複合技術による、最適な表面設計ソリューションの提案表面設計コンソーシアムは、熱処理やコーティングなど単一の技術では対応できない表面に関わるユーザーのニーズ・オーダー(表面課題)に対し、計測・評価を経た根拠のある合理的で最適なバリューコストを高める表面設計ソリューションや、各種の表面損傷に対して寿命予測が可能な表面設計ソリューションを開発し提供する、表面技術のスペシャリスト集団である。同コンソーシアムでは、図2のような形で表面設計ソリューションの提供を進めていくが、中でも「ソリューションラボ」(不二WPCのオープンラボ、https://www.fujiwpc.co.jp/open-lab/)における調査・分析業務が重要となる。コンソーシアム保有技術からなる複合技術によって最適な表面設計を実現することで、ユーザーにコストプライスではなくバリュープライスを認めてもらうことが重要である。充実した分析・試験設備を保有するソリューションラボ(表1)は、バリューを評価してもらうための中心的なスペースであり、ユーザーとともに実際の不具合品を見ながら故障解析を行い複合技術による最適化提案を行うほか、これから必要となる技術開発のための単体試験・実証試験が行え、複合技術による技術提案ができる場と位置付けられている。
図2 取引の流れ表1 ソリューションラボの保有設備4.複合技術の事例:WPC処理と硬質皮膜の組み合わせによるパンチの寿命向上コンソーシアムメンバーの保有技術の複合化による表面課題の解決事例を一つ紹介する。
六角ボルト穴加工用の工具鋼パンチは激しい摩耗損傷に曝される。そこでこのパンチに窒化チタン(TiN)コーティングを施すことにより寿命を約5倍に延長することができた。
しかしながらTiNコーティングを施したパンチでは寿命は長いものの、突発的な欠けによって損傷するため、高サイクル加工では瞬時に大量の不良品が発生してしまう。つまり品質管理が困難と言える。逆に言うと、TiNコーティングを施していないパンチでは寿命は短いものの、凝着や摩耗によって損傷が進行するため交換時期が予測でき、品質管理が容易となる。
従来の表面設計では、耐摩耗性を重視するあまりにパンチの基材である工具鋼の硬さを硬くし、さらにその上に硬質薄膜を付与することが多い。しかしその代償として疲労強度や靱性が劣化し、脆性的な欠けや疲労破壊を誘発しやすくなってしまう。これに対し推奨される表面設計は、基材の材料特性を向上させる表面改質を施した上で、硬質薄膜を形成させることである(図3)。
図3 従来の表面設計(左)と推奨される表面設計(右)硬質薄膜形成によって基材の疲労強度は劣化する。これは脆い硬質薄膜に発生するマイクロクラックが基材へと進展するためである(図4)。つまり、硬質薄膜形成は耐摩耗性を向上する反面、疲労強度を低下させてしまう。
図4 TiN被覆による合金工具鋼(SKD61)の疲労強度の低下これに対し、基材の表面改質処理としてWPC処理(金属製品の表面に微粒子を圧縮性の気体に混合して高速衝突させることで表面が改質する技術)を施すと、疲労強度が向上する。これは主として、WPC処理によって基材表面に大きな圧縮残留応力が付与されるためである。
図5に示すとおり、基材(SKD61、下から二番目の曲線)にTiNコーティングを施すと疲労強度が低下する(一番下の曲線)が、WPC処理(図中のFPB)によって疲労強度が向上した基材(一番上の曲線)にTiNコーティングを施しても疲労強度の劣化はわずか(上から二番目の曲線)であり、依然として高い疲労強度を示す。また、TiNコーティングを溶解除去すると、もとのWPC処理材の疲労強度に戻る。
図5 WPC処理によるTiN薄膜形成による疲労強度低下の抑制 このことからWPC処理によって付与される圧縮残留応力は硬質薄膜形成後も有効に維持されていると考えられる。
このように、WPC処理と硬質薄膜を適切に組み合わせることによって、耐摩耗性と疲労強度や靱性をバランスよく向上することができる。
表面設計コンソーシアムの保有技術や複合処理で可能になることなど、詳細は同コンソーシアムのウェブサイト(https://surfacedesignconsortium.com/)をご覧いただき、お問い合わせいただきたい。
5.おわりに 表面課題の解決においては、情報と技術の整理と統合がとても重要である。
繰返しになるが、金型や機械部品の不具合は、損傷がかなり進んだ段階で発覚することが多いために、一部が欠損していたり、摩滅や腐食が進行したりしていて、はじめに何が起きたのかを明らかにするのが容易でない場合がよくある。はじめに起きる損傷過程を突き止めることで、効果的なソリューションの提供につなげることができるが、証拠が不十分であるなど、容易ではない。
こうした問題に対応するために、表面設計コンソーシアムでは、独自のサービスとして「ソリューションラボ」を開設し、表面設計のスペシャリストであるメンバーが集まって、ユーザーと一緒に原因の調査を行う。ソリューションラボには、光学顕微鏡、走査電子顕微鏡、粗さ計、硬さ計、残留応力測定装置などの各種測定装置が完備されており、ユーザーの情報や測定・分析の結果をもとに、さまざまな角度かディスカッションして、考えられる原因の絞り込みと改善のための表面設計プランを提案していく。さらに必要に応じて、より高度な分析機器を用いた調査や検証実験、実機評価試験にも対応する。
表面設計コンソーシアムではこのように、情報を整理・統合して、現象を正しく判断をするとともに、メンバー各社が持つさまざまな技術・ノウハウを統合して、根拠のある合理的な表面設計ソリューションを提供することを目指している。
機械要素から、金型、切削工具に至るまで、表面に関する困りごとがあれば何でも気軽に、表面設計コンソーシアムに相談いただきたい。まずは、本年6月19日~21日に東京都江東区の東京ビッグサイトで開幕される「第29回 機械要素技術展[東京]」の不二WPC/表面設計コンソーシアムの共同ブース(ブースNo.E58-18)まで、是非とも足を運んでいただき、表面課題に関するディスカッションができれば幸いである。
(月刊ソフトマター2024年6月号より転載)
ヤマハ発動機、水素ガスに対応する溶解炉と熱処理炉を備えた実証施設を新設
ヤマハ発動機は、水素ガスに対応する溶解炉と熱処理炉を備えた実証施設を森町工場(静岡県周智郡森町)に新設する。2025年より、水素ガスによるアルミ合金溶解技術の開発・検証をはじめ、施設・設備等に関わる総合的な実証実験を開始する。2026年末には水素ガスによるアルミ合金の溶解および鋳造部品の熱処理に関する技術開発を完了し、2027年以降、同社グループの国内外鋳造工場に順次導入していく計画。
この実証実験は、製品ライフサイクル全体のCO2排出量のうち、スコープ1( 自社による直接排出(製品の製造や燃料の燃焼))の最少化を目指した取り組みの一つ。二輪車や船外機等の鋳造部品の製造では、現在、アルミ合金を溶解するための熱エネルギーに都市ガスなどの化石燃料を使用している。その代替エネルギーを探求する中で、大きな熱量を要する溶解工程の電化はエネルギー効率という点で不向きという判断から、同社ではスコープ3(製品の使用や配送・輸送などによる排出)の選択肢の一つとしても研究を進める水素エネルギーに着目した。
実証実験では、水素ガスを用いた場合の品質への影響を検証するほか、水素バーナーによる温度制御等の開発を進める。また、グリーン水素を製造する装置と、外部加熱を使わずに合成メタンを製造するメタネーション装置(CO2と水素を触媒で反応させ、合成メタンを製造する装置(静岡大学との共同研究))についても導入を検討しており、水素ガスを安価に製造する設備や、排気ガス中のCO2を再利用する技術開発にも取り組む。
同社は「ヤマハ発動機グループ環境計画2050」で、2050年までに事業活動を含むサプライチェーン全体のカーボンニュートラルを目指している。また、スコープ1、2においてはグループ会社を含む各製造拠点におけるカーボンニュートラル実現の目標を2035年に前倒しし、各種の取り組みを加速させている。
admin 2024年7月12日 (金曜日)
大同特殊鋼、自動車部品の熱処理に対応した連続式真空焼鈍炉の初号機を受注
大同特殊鋼( https://www.daido.co.jp/ )は、自動車部品の熱処理に対応した連続式真空焼鈍炉の初号機を発売し、浜名部品工業から受注した。
本設備は、ヒーター加熱式を採用することで、エネルギー源を電気のみとし、化石燃料を一切使用しない熱処理炉。CO2排出係数がゼロのカーボンフリー電力を使用することで、顧客のCO2排出量ゼロを可能とする。また、従来の雰囲気焼鈍炉では、化石燃料由来の炉内雰囲気を必要としていたが、炉内を真空にすることで従来の設備と同等以上に酸化および脱炭を抑制しながら、雰囲気ガスの使用量をゼロとしている。
同社はこれまでも、主に磁石製造などにおける焼結工程向けに、連続式真空熱処理炉を販売している。本設備の提案にあたり、同社が培ってきた真空技術を鍛造部品や電磁鋼板といった自動車部品の焼鈍工程向けに応用した。今回の受注は、本設備による完全カーボンニュートラル熱処理の提案が、CO2排出量削減に取り組む自動車部品サプライヤーに評価されたものだという。
また、同社は工業炉のカーボンニュートラルを推進する技術として、今回の「電化×真空」のほかに、「水素バーナー+炉内雰囲気のCO2分解」の開発を進めており、「カーボンニュートラルSTC炉」の2027年以降の販売開始を計画している。
連続式真空焼鈍炉(イメージ図)admin 2024年7月12日 (金曜日)
産総研など、脳動脈瘤治療用ステントの抗血栓性コーティングを開発
産業技術総合研究所(産総研)生命工学領域連携推進室 寺村 裕治 連携主幹(細胞分子工学研究部門 分子機能応用研究グループ 研究グループ付)は、ジャパン・メディカル・スタートアップ・インキュベーション・プログラム(JMPR)、N.B. Medicalと共同で、脳動脈瘤治療用ステントのための新規抗血栓性コーティングを開発した。
血液と接触する医療機器において、血栓の発生を抑制することは重篤な合併症を回避する重要な要素。血管内に異物を留置するため、ステントを使用した患者は常に血栓性合併症のリスクにさらされている。そのため抗血小板剤の服用が必須となる。また、血栓発生のリスクを低減するために、これまで多くの抗血栓性コーティングが研究されてきた。従来のコーティングは、タンパク質の非特異的吸着を抑制することで抗血栓性を発揮するという原理が主流だったという。タンパク質吸着の抑制は同時に細胞の接着を阻害することも意味する。そのため従来技術において、抗血栓性と細胞接着性はどちらかを向上させるともう一方は低下する相反関係にあった。
一方で開発した新規抗血栓性コーティングでは原理が異なる。この技術は、血中の非凝固系タンパク質を優先的に吸着することで、ステント表面から生じる血液凝固反応が抑制される。タンパク質の吸着を抑制するのではなく制御する本技術では、抗血栓性を発揮すると同時に細胞接着性が向上している。細胞接着性の向上によって、ステントが血管に取り込まれる速度を増加する。ステントが血管内に早期に取り込まれることは、治療の早期完了を意味する。
開発成果は、さまざまな候補分子において検証を行い、その中で3-アミノプロピルトリエトキシシラン(APTES)をステント表面にコーティングすることで、従来の抗血栓性ポリマーと同等以上の抗血栓性を発揮しつつ、細胞の接着性の向上が認められた。
図1 コーティング材料の化学構造とステント表面の模式図コーティングが有する抗血栓性をヒト血液との接触試験によって確認した。血液に接触させた後、ステントと血液を分析して抗血栓性を評価した。その結果を図2に示す。コーティングなしのステントは血栓に覆われているのに対し、コーティングありのステントは血栓がほとんど付着していない。また血液中の血小板数は、血小板が凝集して血栓化が進行したことで、採血直後の血液を100%とするとコーティングなしのステントと接触した血液は約50%まで減少していた。一方で、コーティングありのステントと接触した血液では血小板の減少はほとんど確認されなかった。
図2 抗血栓性の評価結果(a)ステントの電子顕微鏡画像 (b)血液中の残存血小板比率
**p<0.01はこの結果が偶然である確率が1%未満であり、統計的に非常に有意であることを示している。
さらに細胞の接着性について、従来の抗血栓性コーティングにおいて臨床で最も実績のあるポリマーコーティング(MPCポリマー)との比較を行った。ステントと同材料の基板で血管内皮細胞の培養を行った。顕微鏡で観察したところ、新規コーティングをした表面では従来コーティングをした表面よりも8倍以上多く細胞が接着していた(図3)。
図3 細胞接着の評価結果:蛍光顕微鏡観察画像また、ブタによる大動物実験によってコーティングの安全性も確認した。ブタの血管にコーティングステントを1週間留置し、ブタの状態とステントを留置した血管を評価した。その結果、ブタの健康状態に異変はなく、ステントを留置した血管に異常がないことも血管造影によって確認した(図4)。
図4 コーティングステントを留置したブタ血管の画像正常に血流が維持されている。ステントによる血管損傷や血栓の発生、コーティングによる体への影響などもない。
以上の結果の通り、今回開発されたコーティングは抗血栓性と細胞接着性を両立したステントを可能にする。この技術が示した抗血栓性により、ステント治療で課題とされてきた血栓性合併症のリスクを低減する。さらに細胞接着性が向上したことで、ステントの血管内皮化を促進し、血管への取り込みが早まる可能性を示した。ステントの血管内皮化において、まず周囲の細胞がステントに接着していくことから始まる。接着した細胞は徐々に広がり、ステントを覆う。そして最終的に細胞によって覆いつくされ、ステントが血管内に完全に取り込まれることで治癒が完了する。以上の通りステント治療において、細胞接着が生じなければ治癒が開始されないため非常に重要な過程になる。細胞接着性の向上によって治癒が促進されれば治療期間が短縮化し、抗血小板剤の減薬が可能となることで患者の負担が軽減されるだけでなく医療費の削減にも貢献できる。
admin 2024年7月12日 (金曜日)